Surname

re ber 2

Candidate Number

WJEC CBAC

GCE AS/A level

1092/01

CHEMISTRY – CH2

A.M. THURSDAY, 16 January 2014

1 hour 30 minutes

		For Examiner's use only		
		Question	Maximum Mark	Mark Awarded
	Section A	1.7.	10	
ADDITIONAL MATERIALS	Section B	8.	12	
In addition to this examination paper, you will need a:		9.	16	
 calculator; Data Sheet containing a Periodic Table 	supplied	10.	16	
by WJEC. Refer to it for any relative ato		11.	12	
you require.		12.	14	
INSTRUCTIONS TO CANDIDATES		Total	80	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The *QWC* label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page(s) at the back of the booklet, taking care to number the question(s) correctly.

2 |Examiner only **SECTION A** Answer all questions in the spaces provided. 1. State which **one** of the following is a correct statement. Α The first ionisation energy of the elements increases down Group 1 В The melting temperature of the elements decreases down Group 7 С The first ionisation energy of the elements increases across Period 2 The elements in Group 2 become more electronegative down the group D [1] 2. Chlorine monofluoride has the following formula. CI — F Indicate the polarity in the bond shown by use of the symbols δ^+ and δ^- , giving a reason (a) for your answer. [1] Draw a dot and cross diagram to illustrate the bonding between the two atoms in chlorine (b) monofluoride. Include all outer shell electrons. [1] State why a fluoride ion, F^- , is more stable than a fluorine atom. 3. [1]

 $\begin{array}{c}1092\\010003\end{array}$

		3		
4.	(a)	State the molecular formula of compound L that has the skeletal formula shown.	18	Examiner only
		Br Br		
			[1]	
	(b)	Compound L reacts with alcoholic sodium hydroxide solution to give hex-1,3-diene as of the products.	s one	
		State the type of reaction that has occurred.	[1]	
	••••••			
5.	In inc	lustry, ethanol is produced by reacting ethene with water / steam.		
	State	the conditions of temperature and pressure used for this reaction.	[1]	
		<i>Temperature</i>		1092
6.	A se	ction of an addition polymer is shown below.		_
		$ \begin{array}{c c} CH_3 & CH_2CH_2CH_3 \\ & \\ - & C & - & C \\ \hline & & \\ $		
	State	the systematic name of the monomer that gives this polymer.	[1]	

Λ
4

7.	(a)	State the meaning of the term <i>heterolytic fission</i> .	[1]	Examiner only
	(b)	Complete the equation below to show the products of the heterolytic fission of th C—CI bond in 2-methyl-2-chloropropane.	he [1]	
		$H_{3}C - C - CI + H_{3}C - CH_{3} + CH_{3}C $		

Total Section A [10]

 $\begin{array}{c}109\,2\\010\,005\end{array}$

BLANK PAGE

5

Examiner only

SECTION B

Answer all questions in the spaces provided.

- 8. Sulfur difluoride dioxide (sulfuryl fluoride), SO₂F₂, is used as a gaseous insecticide to control termite infestations in wooden houses.
 - (a) It can be produced by reacting together sulfur dioxide and fluorine.

 $SO_2 + F_2 \longrightarrow SO_2F_2$

Use the oxidation numbers of sulfur to show that sulfur has been oxidised in this reaction. In your answer you should state how changes in oxidation number are related to oxidation. [2]

(b)		uryl fluoride is a tetrahedral molecule where the sulfur atom has no lone pairs or trons.
		the valence shell electron pair repulsion theory (VSEPR) to state why sulfuryl fluoride this shape. [1]
(C)		nonia reacts with sulfuryl fluoride to give sulfamide, $SO_2(NH_2)_2$. During this reaction nonia reacts as a nucleophile.
(c)		
(C)	amm	nonia reacts as a nucleophile.
(c)	amm (i)	nonia reacts as a nucleophile. [1] State the meaning of the term <i>nucleophile</i> . [1]

|Examiner only

[2]

[3]

1092 010007

PMT

Sulfuryl fluoride reacts rapidly with calcium hydroxide to give calcium sulfate, calcium (d) fluoride and water as the only products.

Give the equation for this reaction.

- Bromomethane, CH₃Br, was formerly used as a fumigant gas to remove insect infestation (e) but has now been largely replaced by sulfuryl fluoride. One reason for this change is that bromomethane has an adverse effect on the ozone layer.
 - Explain how both bromomethane and CFCs have an adverse effect on the ozone (i) layer.

Bond enthalpy/kJ mol⁻¹ Bond С—Н 412 C—F 484 C--CI 338 C--Br 276 S—F 410

- - - The table below should be used to help you in your response.

	•••••
	•••••
(ii) Use the information in the table in (i) above to state why sulfuryl fluoride is r preferred to bromomethane as a fumigant.	וסw [1]
	•••••
Total	401

Examiner only

Acid	Formula	Boiling temperature /°C	Solubility in water	
ethanoic	CH ₃ COOH	118	solubility decreasing	
propanoic	CH ₃ CH ₂ COOH	141		
butanoic	CH ₃ (CH ₂) ₂ COOH			
pentanoic	CH ₃ (CH ₂) ₃ COOH			
hexanoic	CH ₃ (CH ₂) ₄ COOH	205		
heptanoic	CH ₃ (CH ₂) ₅ COOH	223	¥	
(ii) Describe	the trend in boiling ter reases and suggest a re		per of carbon atom	
	00			

9. (a) The table below shows some physical properties of six carboxylic acids.

(iii) Explain why the acids become less soluble in water as the sizes of the molecules increase. [2]

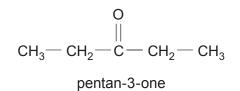
.....

.....

© WJEC CBAC Ltd.

 $1092 \\ 010009$

Examiner only


(b) Calcium propanoate, $(CH_3CH_2COO)_2Ca$, is added to bread to prevent mould formation. It can be made from propan-1-ol by the following reactions.

CH ₃ CH ₂ C propan	-	reagent(s)calcium hydroxide \longrightarrow CH_3CH_2COOH \longrightarrow (CH_3CH_2COO)_2Capropanoic acidcalcium propanoate
(i)	State	the name of the reagent(s) used in the first stage. [1]
(ii)		noic acid, in its liquid state, exists as a dimer, where two molecules of the acid together using hydrogen bonding.
		the structural formula of this dimer and show the hydrogen bonding between o molecules. [1]
(iii)		experiment to make calcium propanoate, 50.0 cm ³ of a solution of propanoic of concentration 1.00 mol dm ⁻³ was completely neutralised by calcium xide. Calculate the number of moles of propanoic acid used. [1]
	II	State the number of moles of calcium hydroxide needed to just react with all the propanoic acid. [1]
	111	Calculate the maximum mass of calcium propanoate (M_r = 186) which could be formed. [1]
		g

(1092-01)

Examiner only

(iv) Calcium propanoate produces pentan-3-one when it is strongly heated.

Write the displayed formula of **two** structural isomers of pentan-3-one. [2]

- (c) A dicarboxylic acid, HOOC—(CH₂)_n—COOH, contains 49.3% of carbon and 43.8% of oxygen by mass. In both parts (i) and (ii) **show your working**.
 - (i) Use these figures to find the ratio of carbon atoms to oxygen atoms in the acid. [2]

Ratio C : O Use this ratio to find the value of n in the formula of the acid. You are reminded that 1 molecule of the acid contains four oxygen atoms. [1]

n =

(ii)

BLANK PAGE

11

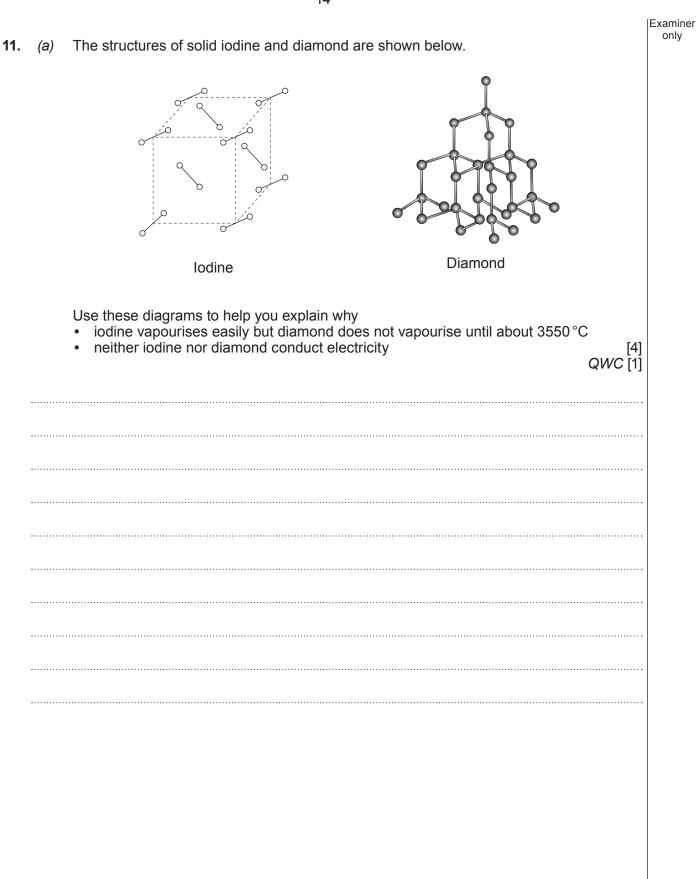
|Examiner

10.	(a)	A solution of calcium chloride was obtained by adding 0.40g of calcium metal to 80 cm ³	only
	()	of hydrochloric acid of concentration 0.20 mol dm ⁻³ . The equation for the reaction is	

Ca + 2HCl \longrightarrow CaCl₂ + H₂

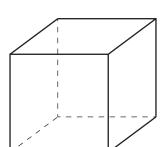
(i) Use the information given to show that an excess of calcium metal was used. [3]

- (ii) State **one** observation made during the reaction apart from the mixture becoming warm. [1]
- (b) A sample of a calcium compound **E** of mass 1.50 g was added to 200 cm³ of cold water and the mixture heated until it all dissolved.


Use relevant information from the table to calculate the mass of compound **E** that crystallised when the solution was cooled to 0° C. [2]

Solubility of compound E /g per 100 g of water	Temperature / °C
0.13	0
0.75	50
1.22	100

Mass that crystallised = g


	udent was given a solution of calcium bromide and asked to ca wn in the diagram below.		Examine only
	calcium bromide solution		
	flame test aqueous silver nitrate	is chlorine	
(i)	State the colour given in the flame test.	[1]	
(ii)	State what was seen when aqueous silver nitrate was added.	[1]	
(iii)	Give the ionic equation for the reaction occurring in (ii).	[1]	
(iv)	State what was seen when aqueous chlorine was added to th bromide.	ne solution of calcium [1]	
(v)	 Explain why chlorine reacted as described in (iv). Your answer should include the type of bonding and the species present in calcium brown the type of reaction occurring why chlorine is able to react in this way an appropriate equation 	omide [5] Q <i>W</i> C [1]	
		Total [16]	

(1092-01)

Examiner only

(b) Potassium iodide has the same cubic structure as sodium chloride. Use the diagram below to identify and show the positions of the species involved. [2]

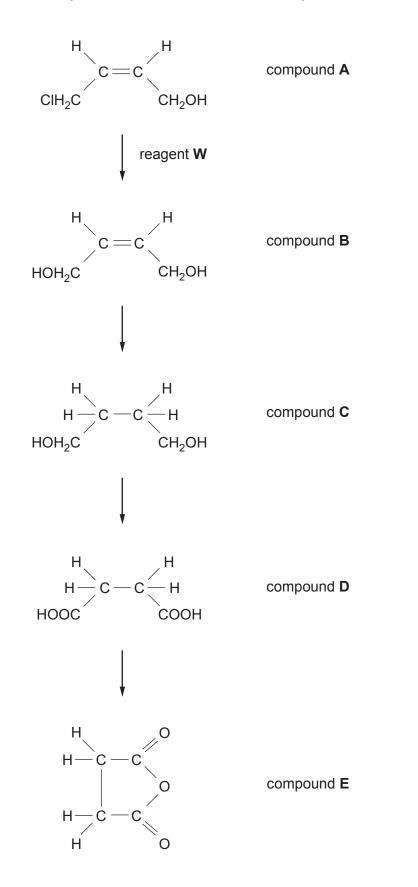
(c) You are given an aqueous solution containing 0.05 mol of barium chloride and a supply of potassium sulfate solution.

Devise a method to obtain the maximum amount of pure dry barium sulfate. You should assume that a risk assessment has been carried out.

[4] *QWC* [1]

Total [12]

(b)


(c)	Methane reacts with chlorine in a substitution reaction.					
	(i)	The first stage of the reaction is as follows.				
		Cl ₂ → 2Cl•				
		State an essential condition for this stage.	[1]			
	(ii)	State what is meant by the term propagation stage.	[1]			
	•••••					
	••••••					
	(iii)	Write an equation that represents a propagation stage of this reaction.	[1]			
	•••••					

QUESTION CONTINUES ON PAGE 18

Examiner only

(d) Study the reaction sequence below and then answer the questions that follow.

(i)	Compound A is a (Z)-isomer.	Examiner only
	Write the displayed formula of the (<i>E</i>)-isomer of compound A . [1]	
(ii)	State the name of reagent W and the solvent in which it is dissolved. [1]	
(iii)	State the name of a catalyst used in the hydrogenation of compound B to produce compound C . [1]	
(iv)	The infrared spectra of compounds D and E are taken. Use the Data Sheet to explain how the infrared spectra can be used to distinguish between compounds D and E . [2]	
	Total [14] Total Section B [70]	
	END OF PAPER	

	Examiner only
For continuation only.	

20

GCE AS/A level

CHEMISTRY – DATA SHEET FOR USE WITH CH2

A.M. THURSDAY, 16 January 2014

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻¹
C—Br	500 to 600
C—CI	650 to 800
С—О	1000 to 1300
C — C	1620 to 1670
C — O	1650 to 1750
C■N	2100 to 2250
C—H	2800 to 3100
O—H	2500 to 3550
N—H	3300 to 3500

THE PERIODIC TABLE

		A [1		
0	Helium 2	20.2 Neon 10	40.0 Ar Argon 18	83.8 Kr Krypton 36	131 Xe 54	(222) Rn Radon 86			
7		19.0 F Fluorine 9	35.5 CI Chlorine	79.9 Br 35	127 lodine 53	(210) At Astatine 85		175 Lu Lutetium 71	(257) Lr Lawrencium 103
9	p Block	16.0 Oxygen 8	32.1 S Sulfur 16	79.0 Selenium 34	128 Te 52	(210) PO Bolonium 84		173 Yb 70 70	(254) No 102
Ŋ	p Bl	14.0 Nitrogen	31.0 Phosphorus	74.9 AS Arsenic 33	122 Sb Antimony 51	209 Bi 83		169 Tm 11ullium 69	(256) Mandelevium 101
4		Carbon 6	28.1 Silicon	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100
ო		10.8 B 5	27.0 Al Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		165 HO Holmium 67	(254) Est Einsteinium 99
i			Î	65.4 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf Californium 98
				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	f Block	159 Tb Terbium 65	(245) BK Berkelium 97
				58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		157 Gd Gadolinium 64	(247) Cm Curium 96
				58.9 58.9 Co 27 103 Rh Rhodium 45	192 Ir Iridium 77		(153) Eu Europium 63	(243) Am Americium 95	
Group	V relative	, atomic mass atomic number	ock	55.8 Fe Iron 26	101 Ruthenium 44	190 Osmium 76		150 Smarium 62	(242) Pu Plutonium 94
- 5 5	Key	Symbol Z Z	d Block	54.9 Mn Manganese 25	98.9 TC Technetium 43	186 Re Rhenium 75		(147) Pm Promethium 61	(237) Np Neptunium 93
		ω z		52.0 Chromium 24	95.9 Mo Molybdenum 42	184 W Tungsten 74		144 Neodymium 60	238 U Uranium 92
				50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Praseodymium 59	(231) Pa Protactinium 91
				47.9 Ti Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72	ļ,	140 Cerium 58	232 Th 90
				45.0 Sc Scandium 21	88.9 Y Yttrium 39	139 La ▶ 57	Actinium 89	 Lanthanoid elements 	 Actinoid elements
3	ž	9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	► Lar ele	► Ac ele
~	s Block Hydrogen	6.94 Li 1 3	23.0 Na 11	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr Francium 87		
	Period	© WJEC C	CBAC Ltd.	1 (1092-01A) I	9	<u> </u>		